

Strong Kleinman-Forbidden Second Harmonic Generation in Chiral Sulfide: La₄InSbS₉

Hua-Jun Zhao,[†] Yong-Fan Zhang,[‡] and Ling Chen^{*,†}

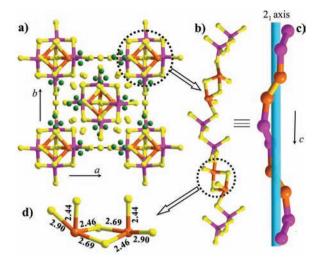
[†]Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

[‡]Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China

Supporting Information

ABSTRACT: A new chiral sulfide family, Ln_4InSbS_9 (Ln = La, Pr, Nd), with its own structure type in space group $P4_12_12$ or its enantiomorph $P4_32_12$ has been synthesized by solid-state reaction. Remarkably, the La member shows the strongest Kleinman-forbidden second harmonic generation to date, with an intensity 1.5 times that of commercial AgGaS₂ at a laser wavelength of 2.05 μ m, and exhibits type-I phase-matchable behavior. Density functional theory calculations and ab initio molecular dynamics simulations suggest that lattice vibrations may be responsible for the origin and magnitude of the strong SHG effect.

he prerequisite of a nonlinear optical (NLO) material is that it be crystallographically noncentrosymmetric (NCS). Out of the total 32 point groups, there are 20 NCS point groups, of which the chiral 422 and 622 ones should have null second harmonic generation (SHG) response under the restriction of Kleinman symmetry.¹ Nevertheless, as a result of dispersion, very small Kleinman-forbidden SHG coefficients are observed. For example, α -TeO₂ with 422 symmetry shows $d_{14}(1.328 \ \mu m) \approx 0.36 \ pm/V$ or $d_{14}(1.064 \ \mu m) \approx 0.61 \ pm/V$,^{2a-d,h} and (K₃I)[SmB₁₂(GaS₄)₃] with 622 symmetry exhibits a powder SHG intensity 0.3 times that of potassium dihydrogen phosphate (KDP) at 1.94 μ m.^{2e} However, violation cases are also found in large-sized single crystals of α -SiO₂ (32 point group) and LiIO₃ (6 point group), for which the unexpected d_{14} values of 2.6 × 10⁻³ pm/V^{2f} and 0.24 pm/V,^{2g} respectively, have been observed. It has also been known that when the second harmonic frequency approaches that of the electronic exciton resonance $(2h\nu \approx E_g)$, the small Kleinman-forbidden coefficient can become large.^{2a,h-1} For example, α -TeO₂ shows a large Kleinman-forbidden d_{14} value of ~4.32 pm/V at 0.659 μ m, which is 10 times larger than that at 1.328 μ m, because the second harmonic wavelength (0.33 μ m \approx 3.76 eV) is very close to its optical band gap (3.75 eV).^{2a,i,m}


The common strategy to predesign a NCS compound is to involve asymmetric building units in the crystal structure, such as d⁰ transition-metal cations (Ti⁴⁺, Nb⁵⁺, W⁶⁺, etc.) susceptible to second-order Jahn–Teller distortion or p cations with stereochemically active lone-pair electrons (Se⁴⁺, Te⁴⁺, As³⁺, Sb³⁺, etc).³ We recently realized that in quaternary rare-earth metal/metal/antimony/chalcogenide systems, the SbQ₂ polyhedron tends to adopt an asymmetric geometry, such as the dimeric teeter-totter Sb₂S₆ polyhedron in Ln₄GaSbS₉,^{4a} the teeter-totter SbQ₄ (Q = S, Se) in La₄FeSb₂Q₁₀,^{4b} and squarepyramidal SbS₅ in Ln₂Mn₃Sb₄S₁₂.^{4c} More interestingly, the arrangement of such asymmetric units is crucially affected by the MQ_a polyhedron. For example, SbQ_a units are eventually arranged in a centrosymmetric structure when linked by FeS₄ or MnS₆^{4b,c} but an NCS structure with a strong SHG effect when linked by Ga₂S₇.^{4a}

In this communication, we report an unusual chiral quaternary sulfide showing the strongest Kleinman-forbidden NLO response to date. Density functional theory (DFT) calculations and ab initio molecular dynamics (MD) simulations suggest that lattice vibrations may be responsible for its origin and magnitude.

The compounds Ln₄InSbS₉ (Ln = La, Pr, Nd) crystallize in space group $P4_12_12$ or its enantiomorph $P4_32_12$ [Table S1 in the Supporting Information (SI)] and are characterized by unusual $[In_2Sb_2S_{11}^{10-}]_{\infty}$ infinite helical chains propagating along the *c* direction and separated by isolated Ln³⁺ cations and discrete S²⁻ anions. These chains are further packed around the 4_1 helical axes (Figure 1a). Such chains are built from dimeric teeter-totter Sb₂S₆ polyhedra and dual-apex-shared In₂S₇ tetrahedra (Figure 1b); they are reminiscent of the chains in Ln₄GaSbS₉^{4a} but differ in that Sb₂S₆ and In₂S₇ are arranged around a 2-fold screw axis, which means that neighboring dimers are oriented in opposite directions (Figure 1c), whereas the neighboring Sb₂S₆ or Ga₂S₇ in Ln₄GaSbS₉ are arranged in-phase (Figure S5 in the SI).

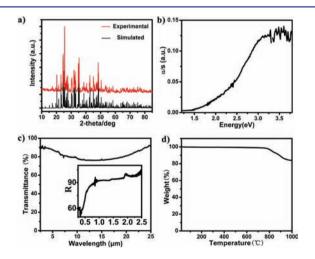
The SbS₄ polyhedron is remarkably distorted as a consequence of the stereochemically active lone-pair electrons of Sb³⁺, with Sb–S bond distances of 2.44–2.91 Å that are comparable to those found in Ln₄GaSbS₉ (2.45–2.84 Å),^{4a} La₄FeSb₂Q₁₀ (2.46–2.92 Å),^{4b} and La₇Sb₉S₂₄ (2.43–3.00 Å).⁵ The InS₄ tetrahedron is less distorted, with In–S distances of 2.45–2.49 Å and S–In–S angles ranging from 104 to 111°. These are comparable to those in CuInS₂.⁶ La³⁺ cations and isolated S^{2–} anions (sulfur atoms S7, S8, S9, and S10) occur between the infinite helical chains. Thus, the formula can be written as $(La^{3+})_8([In_2Sb_2S_{11}]^{10-})(S^{2-})_7$. The cationic La1 and La2 exhibit normal LaS₆ trigonal-prismatic coordination, and La3 and La4 are found in LaS₇ monocapped trigonal prisms with La–S lengths varying from 2.84 to 3.45 Å, comparable to those in γ -La₂S₃,⁷ α -La₂S₃,⁸ La₇Sb₉S₂₄,⁵ and La₄FeSb₂S₁₀.^{4b}

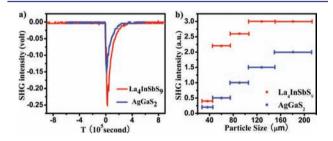
Received: November 20, 2011 Published: January 10, 2012

Figure 1. (a) View of La₄InSbS₉ along (001). (b) Helical $[In_2Sb_2S_{11}^{10-}]_{\infty}$ chains along the *c* direction. (c) Helical configuration of the chains. S atoms have been omitted for clarity, and the 2₁ screw axis is visualized as a thick blue line. (d) Local coordination of the dimeric teeter-totter Sb₂S₆ polyhedra. Green, La; pink, In; orange, Sb; yellow, S.

Naturally, La₄InSbS₉ is diamagnetic. Pr₄InSbS₉ obeys the Curie–Weiss law over the entire experimental temperature region, whereas Nd₄InSbS₉ deviates from it below 40 K (Figure S6). Their Curie constants and Weiss temperature are 6.54 and 7.25 emu K/mol and -21.67 and -22.74 K, respectively. The experimental effective magnetic moments are 7.23 and 7.61 $\mu_{\rm B}$, respectively, which are comparable to the calculated values, 7.16 and 7.24 $\mu_{\rm B}$.

The optical band gaps for the La, Pr, and Nd members were estimated to be 2.07, 2.09, and 2.12 eV, respectively, (Figure 2b




Figure 2. (a) Experimental and simulated X-ray diffraction patterns, (b) UV/vis/NIR diffuse reflectance spectrum, (c) IR and (inset) UV/ vis/NIR transmittance curves, and (d) thermogravimetric analysis curve for La_4InSbS_9 .

and Figure S7), which are comparable to that of commercial $AgGaS_2$ (2.62 eV),¹⁰ implying that La_4InSbS_9 may have a suitable laser damage threshold for NLO applications. Several Nd³⁺ characteristic f–f transition absorptions between 1.3 and 2.1 eV were observed for Nd₄InSbS₉, similar to those for NaNdGa₄Se₈.¹¹ The diffuse-reflectance and IR spectroscopy

studies indicated that powdered La₄InSbS₉ exhibits wide transparency comparable to that of powdered AgGaS₂ [1.0–25 μ m (Figure 2c) vs 0.6–25 μ m (Figure S8)]. These data distinguish La₄InSbS₉ as a potential candidate for NLO materials in the mid- and far-IR regions.

The electronic structures of La_4InSbS_9 were investigated using DFT (Figure S9). The valence band (VB) maximum and conduction band (CB) minimum are located at different kpoints indicating an indirect band gap of 2.23 eV, which is close to the experimental value. As the total and partial density of states (DOS) (Figure S10) indicate, the top of the VB is dominated by S 3p states, whereas the bottom of the CB is primarily derived from La 5d states mixed with some Sb 5p and In 5s states. Thus, the band gap absorption is likely to be the result of electronic transitions from S 3p to La 5d states.

Remarkably, La₄InSbS₉ displays an SHG intensity 1.5 times that of commercial AgGaS₂ in an IR laser at 2.05 μ m (Figure

Figure 3. (a) Oscilloscope traces of the SHG signals of La_4InSbS_9 and $AgGaS_2$ at the same particle size of $150-210 \ \mu m$. (b) Particle-size dependence of the SHG intensity for La_4InSbS_9 and $AgGaS_2$.

3). Moreover, the SHG intensities increase with the particle size and are saturated at a maximum value, indicating type-I phasematchable behavior. No obvious SHG signals were observed for the Pr and Nd members, possibly because of their much poorer crystallinity.

At first sight, this nonzero SHG response of La4InSbS9 is very surprising. As it crystallizes in space group P41212, which belongs to the 422 point group, the space-group symmetry requires two nonvanishing tensors of second-order susceptibilities to follow the equation $d_{14} = -d_{25}$. On the other hand, under the restriction of Kleinman symmetry, $^{1}d_{14}$ must be equal to d_{25} (i.e., $d_{14} = d_{25}$). Consequently, both d_{14} and d_{25} must be equal to zero. Therefore, any material crystallizing in the 422 point group is forbidden from exhibiting an SHG response by Kleinman symmetry. Since Kleinman symmetry is based on the assumption that the medium is dispersionless, the presence of dispersion can damage its validity, leading to a very weak SHG response. For instance, α -TeO₂ exhibits a small d_{14} of ~ 0.36 pm/V at 1.328 μ m.^{2a,h} Electronic exciton resonance, which would be expected only when the second harmonic frequency is close to an absorption band gap of the material, can significantly enhance the SHG effect,¹² leading to strong violations of Kleinman symmetry.^{2a,h-1} For instance, α -TeO₂^{2a,i} displays a large d_{14} value of 4.32 pm/V at 0.659 μ m, for which the second harmonic wavelength is 0.33 μ m (~3.76 eV), which is very close to its optical band gap (3.75 eV).^{2m} However, this cannot explain the very large SHG coefficient of the title compound La4InSbS9 under our measurement conditions (roughly estimated to be 20 pm/V, which is 5 times that of α -TeO₂). In this case, the second harmonic wavelength is ~1.00 μ m (~1.2 eV), which differs significantly from the optical band gap (2.07 eV). Therefore, the electronic resonance

Journal of the American Chemical Society

would not be expected. As a further confirmation of this, we first calculated the second-order NLO susceptibility coefficients of La₄InSbS₉ using the length-gauge formalism derived by Aversa and Sipe, and null static SHG coefficients were then obtained to satisfy the Kleinman relations in the zero-frequency limit¹³ (for details, see the SI). Consequently, the second-order NLO coefficients of some possible configurations of La₄InSbS₉ were calculated. These configurations were obtained via ab initio MD simulations at 300 K using the Nosé algorithm (for details, see the SI). The structure simulation length was 10 ps with a time step of 1 fs. After 7 ps, 11 typical configurations were chosen. The calculation results are summarized in Table S4. Nine of the 11 configurations had NLO coefficients close to 15 pm/V, which roughly agrees with the experimental observation: 1.5 times that of AgGaS₂ [i.e., $d_{36}(10.6 \ \mu m) =$ 13 pm/V).14 These results strongly suggest that thermal vibrations of the lattice induce structure configurational variations that may be responsible for the strong SHG effect of La₄InSbS₉.

Meanwhile, La₄InSbS₉ exhibits excellent thermal stability and shows no obvious weight loss up to 765 °C (Figure 2d and Figure S11). The 16% weight loss above 765 °C corresponds to the decomposition and the volatilization of Sb₂S₃ (mp 550 °C) and is close to the calculated value of 15.7% (for details, see the SI)

In summary, three quaternary chiral chalcogenides with their own structure type, $Ln_4InSbS_9 \equiv (Ln^{3+})_8([In_2Sb_2S_{11}]^{10-})(S^{2-})_7$ (Ln = La, Pr, Nd) have been reported. The major structure motif is $[In_2Sb_2S_{11}^{10-}]_{\infty}$ infinite helical chains propagating along the *c* direction that are well-separated by Ln^{3+} cations and discrete S²⁻ anions. Remarkably, the La member shows the strongest Kleinman-forbidden SHG effects to date, with an intensity 1.5 times that of the commercial IR NLO material AgGaS₂ under type-I phase-matching conditions at a laser wavelength of 2.05 μ m. Meanwhile, the powdered La member exhibits a band gap of 2.07 eV, high transparency (1.00-25.00 μ m), and excellent thermal stability up to 765 °C. These primary data indicate that La₄InSbS₉ is a potential candidate for IR NLO applications. The theoretical studies suggest that the origin and magnitude of the strong SHG response may originate from thermal vibrations of the lattice.

ASSOCIATED CONTENT

S Supporting Information

Crystallographic data (CIF), experimental and theoretical methods, and additional tables and figures. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

chenl@fjirsm.ac.cn

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China (Projects 90922021, 21171168, and 90922022), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-H20), and the NSF of Fujian Province (2011J05039). We thank Prof. Ning Ye and Dr. Xin-Song Lin at FJIRSM for help with the SHG measurements.

REFERENCES

(1) Kleinman, D. A. Phys. Rev. 1962, 126, 1977.

(2) (a) Levine, B. F. *IEEE J. Quantum Electron.* 1973, QE-9, 946.
(b) Singh, S.; Bonner, W. A.; Van Uitert, L. G. Phys. Lett. 1972, 38A, 407. (c) Chemla, D. S.; Jerphagnon, J. Appl. Phys. Lett. 1972, 20, 222.
(d) Porter, Y.; Halasyamani, P. S. Chem. Mater. 2001, 13, 1910.
(e) Guo, S.-P.; Guo, G.-C.; Wang, M.-S.; Zou, J.-P.; Zeng, H.-Y.; Cai, L.-Z.; Huang, J.-S. Chem. Commun. 2009, 4366. (f) Crane, G. R.; Bergman, J. G. J. Chem. Phys. 1976, 64, 27. (g) Okada, M.; Ieiri, S. Phys. Lett. 1971, 34A, 63. (h) Franken, P. A.; Ward, J. F. Rev. Mod. Phys. 1963, 35, 23. (i) Levine, B. F.; Miller, R. C. Phys. Rev. B 1975, 12, 4512. (j) Dailey, C. A.; Burke, B. J.; Simpson, G. J. Chem. Phys. Lett. 2004, 390, 8. (k) Xu, M. Z.; Jiang, S. D. J. Phys.: Condens. Matter 2006, 18, 8987. (l) Berkaïne, N.; Orhan, E.; Masson, O.; Thomas, P.; Junquera, J. Phys. Rev. B 2011, 83, No. 245205. (m) Al-Kuhaili1, M. F.; Durrani, S. M. A.; Khawaja, E. E.; Shirokoff, J. J. Phys. D: Appl. Phys. 2002, 35, 910.

(3) (a) Halasyamani, P. S.; Poeppelmeier, K. R. Chem. Mater. 1998, 10, 2753. (b) Ra, H.-S.; Ok, K.-M.; Halasyamani, P. S. J. Am. Chem. Soc. 2003, 125, 7764. (c) Bera, T. K.; Jang, J. I.; Song, J.-H.; Malliakas, C. D.; Freeman, A. J.; Ketterson, J. B.; Kanatzidis, M. G. J. Am. Chem. Soc. 2010, 132, 3484. (d) Gandrud, W. B.; Boyd, G. D.; Mcfee, J. H. N. Appl. Phys. Lett. 1970, 16, 59. (e) Zhang, Q.; Chung, I.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. J. Am. Chem. Soc. 2009, 131, 9896. (4) (a) Chen, M.-C.; Li, L.-H.; Chen, Y.-B.; Chen, L. J. Am. Chem. Soc. 2011, 133, 4617. (b) Zhao, H.-J.; Li, L.-H.; Wu, L.-M.; Chen, L. Inorg. Chem. 2009, 48, 11518. (c) Zhao, H.-J.; Li, L.-H.; Wu, L.-M.; Chen, L. Inorg. Chem. 2010, 49, 5811.

(5) Assoud, A.; Kleinke, K. M.; Kleinke, H. Chem. Mater. 2006, 18, 1041.

(6) Hahn, H.; Frank, G.; Klingler, W.; Meyer, A. D.; Stoerger, G. Z. Anorg. Allg. Chem. 1953, 271, 153.

(7) Mauricot, R.; Gressier, P.; Evain, M.; Brec, R. J. Alloys Compd. 1995, 223, 130.

(8) Sleight, A. W.; Prewitt, C. T. Inorg. Chem. 1968, 7, 2282.

(9) West, A. R. Solid State Chemistry and Its Applications; Wiley: Chichester, U.K., 1984.

(10) (a) Chemla, D. S.; Kupecek, P. J.; Robertson, D. S.; Smith, R. C. Opt. Commun. 1971, 3, 29. (b) Boyd, G. D.; Kasper, H.; McFee, J. M. IEEE J. Quantum Electron. 1971, QE-7, 563. (c) Bhar, G. C.; Smith, R. C. Phys. Status Solidi A 1972, 13, 157.

(11) Choudhury, A.; Dorhout, P. K. Inorg. Chem. 2008, 47, 3603.

(12) (a) Wynne, J. J. Phys. Rev. Lett. **197**, 27, 17. (b) Zhang, X.-Q.; Tang, Z.-K.; Kawasaki, M.; Ohtomo, A.; Koinuma, H. J. Phys.: Condens. Matter. **2003**, 15, 5191.

(13) Rashkeev, S. N.; Lambrecht, W. R. L. Phys. Rev. B 2001, 63, No. 165212.

(14) Dmitriev, V. G.; Gurzadyan, G. G.; Nikogosyan, D. N. *Handbook of Nonlinear Optical Crystals*, 3rd ed.; Springer: New York, 1999.